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The Villars formalism for nuclear rotation 

R. E. PEIERLS and J. N. URBANOJ- 
Department of Theoretical Physics, University of Oxford 
M S .  received 3 1 s t  July 1967 

Abstract. The paper discusses the method proposed by Villars for describing the 
rotational states of nuclei. For simplicity only two-dimensional rotation is considered 
for the ground-state band of an even-even nucleus in which the last occupied sub-shell 
of the deformed potential is completely filled. I t  is shown how to avoid inconsistencies 
arising from the multi-valuedness of the angle variable which appears in the formalism. 
In the Villars method the moment of inertia appears in terms of a sum over the 
eigenstates of the ‘intrinsic’ Hamiltonian. Since these are not calculable exactly, one 
needs an approximation scheme. A possible scheme based on the Hartree-Fock 
approximation is used, though for the present this is approximated further by the use 
of harmonic oscillator wave functions. The  case of 28Si is treated by way of illus- 
tration. The  detailed model is too unrealistic to expect physically significant results ; 
it does suggest, however, that the method is suitable for practical evaluation. Further 
steps for improving the accuracy are discussed. 

1. Introduction 
Recently, Villars (1965, 1966) has proposed a new formalism for describing rotational 

states of nuclei. This problem is still of interest today, in spite of the existence of many 
important papers both on the practical applications of the concept of rotational states, and 
on the theoretical basis. Much of the current work is based on the idea of the ‘cranking 
model’ first proposed by Inglis, but in spite of its simplicity and intuitive value the theor- 
etical foundations of this model are not very secure, particularly if one wishes to take into 
account the effects of correlations between the nucleons. Another line of approach 
(Thouless 1960, Peierls and Thouless 1962) is based on a variational approach; the accuracy 
of the results therefore depends on how well the trial function used represents the rotational 
states. In  addition, this approach is formulated in terms of an exact solution of the Hartree- 
Fock equations of the nuclear problem, and when a full Hartree-Fock calculation is too 
laborious it is not clear how best to use the variational approach (Husain 1967). For these 
reasons it is still interesting to consider new formulations of the problem. One such possi- 
bility has been proposed in a paper by Kerman and Klein (1963), but we shall not follow 
this in the present study. 

The idea of the method of Villars is to extract from the Hamiltonian of the many-body 
system an ‘intrinsic’ part which does not contain the rotational energy, so that the remainder 
relates directly to the rotational properties. This division is carried out, in principle, 
exactly, though its practical evaluation must, of course, require approximations. No 
attempt is made to separate the degrees of freedom of the system into intrinsic and collective 
ones, and the variables used in the formulation of the intrinsic Hamiltonian are still the 
degrees of freedom of all nucleons. The  redundancy arising from this manifests itself in a 
degeneracy of the intrinsic Hamiltonian, which has the same eigenvalue spectrum for all 
values of the angular momentum. 

t Now at Laboratorio de Fisica, Universidade de Coimbra, Portugal. 
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Villars formulated his method only for the case of rotation about a given axis, and we 
shall retain the same restriction in the present paper. The  extension to three-dimensional 
rotation would make the expressions more complicated, but does not seem to involve any 
new difficulties of principle. 

For rotation about a given axis, say the x axis, one then needs for the specification of 
the intrinsic Hamiltonian an angle which is related to the orientation of the deformed 
nucleus, or rather its projection on the xy plane. This angle 4 may be taken as a function 
of the nucleon coordinates only. Care must, however, be taken because physically such an 
angle can be defined only mod 2n. One may choose to restrict it to an interval of length 
2n, but this results in a discontinuity which would cause very severe complications. 
Otherwise the angle is multivalued, and must not be assumed to be a physical observable. 
Some of the equations of Villars are somewhat ambiguous as they stand because their 
derivation relies on the existence of 4 as an observable. The  simplest way out is to work, 
not with the angle 4 itself, but with a periodic function, such as exp(i4). If the intrinsic 
state of the nucleus has mirror symmetry, as is the case for the ground state of an even-even 
nucleus, which we shall consider in detail, even a rotation by 7~ causes no physical change, so 
that 4 is defined only mod rr. We shall therefore have to work with the quantity exp(2i4). 
One object of the present paper is to re-write the Villars formalism with this point in 
mind. 

I n  this way one obtains an expression for the Hamiltonian of the nucleus in terms of 
intrinsic operators, in which the angular momentum appears as a parameter. For low 
angular momentum the dependence of the energy on this parameter can be handled by 
perturbation theory, yielding an expression for the rotational energy in terms of the 
eigenstates and eigenvalues of the intrinsic Hamiltonian H(O). This expression is, in 
principle, exact, but its evaluation would require a knowledge of the exact solutions for 
So), which are as hard to obtain as those for the original Hamiltonian H.  If we possessed 
techniques of calculation adequate for this purpose, we could also directly calculate the 
spectrum of H ,  and the rotational energies would be known without any special device. 

One must therefore necessarily have recourse to approximate techniques, and the 
obvious approach is by way of the Hartree-Fock approximation. This is applicable only 
to non-singular potentials, and we shall discuss a model using non-singular forces. For a 
treatment using realistic forces, one would have to replace the Hartree-Fock approximation 
by one of the more modern techniques, such as that of Brueckner, but before proceeding 
to this degree of elaboration it seems worth studying the method in a model with non- 
singular forces. 

Even then the Hartree-Focli method neglects nucleon-nucleon correlations, which 
are likely to be important for the moment of inertia. It is therefore essential to have a 
formalism in which such correlations, in particular pairing correlations, can be incorporated. 
There seems to be no difficulty of principle in including these in the Villars formalism, and 
work in this direction is now under way. The  present paper will, however, deal only with 
the Hartree-Fock type of approximation. 

It then turns out that the perturbation theory required to determine the rotational 
energy is somewhat ambiguous, since the Hartree-Fock approximation to does not 
possess the degeneracy appropriate to the exact solution. This difficulty can be avoided 
by using a variation principle for the second-order perturbation, which makes the result 
less sensitive to the lack of knowledge of the exact excitation spectrum of H(O). 

Even with the approximations outlined above, the algebra would be prohibitively 
complicated, since the angular operator exp(2i4) is strongly non-linear in the nucleon 
coordinates. I t  turns out to be the ratio of a numerator which is a linear combination of 
one-particle operators and a non-linear denominator which depends on the shape, but not 
on the orientation, of the two-dimensional mass tensor. While the orientation of this mass 
tensor is evidently an important dynamical variable for the collective motion, it seems 
reasonable to expect the fluctuations in the shape of a deformed nucleus to be small. This 
approximation can be tested and is found to be satisfied for not too small nuclei and not 
too small deformation. 

We shall report numerical results for a simple model by way of illustration. 
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2. The modified Villars method 
For a system of A nucleons with the Hamiltonian 

where p i  is the momentum of the ith nucleon and u i j  a two-body interaction potential, the 
idea of Villars (1965, 1966) is to express the Hamiltonian in the form 

H = H‘O’ + JH‘1’ + $JZH‘Z’ + . . . (2.2) 

J = L,+S, (2.3) 

in which J denotes the x component of the total angular momentum: 

L and S being the orbital and spin angular momenta. The  operators are defined so 
as to commute both with the angular momentum J and with a collective angle $, which is 
conjugate to J :  

(We use units such that #i = 1.) Thus 
[ J ,  41 = -i. (2.4) 

[H‘n), J ]  = 0 
[H‘n), $1 = 0.  

The fact that each of these operators commutes with a pair of mutually non-commuting 
operators obviously requires it to have a high degree of degeneracy. Indeed, if we regard 

as a matrix in the space of J ,  it can easily be seen to be a multiple of the unit matrix, 
the factor still being a matrix in the space of the remaining ‘intrinsic’ variables. This 
property justifies the description of the H(n)  as intrinsic operators, and in particular H‘O) 
as the intrinsic Hamiltonian. 

The  representation (2.2) of the Hamiltonian is an identity if J is regarded as an operator. 
We may, however, also consider the expression (2.2) with J a parameter. Calling this 
parameter J’, we can write 

H(J’)  = H‘O’ + J’H‘1’ + $J’2H‘2’ + . . . , ( 2 . 2 ~ )  
For given J’, H(J’) has eigenstates which may also be chosen to be eigenstates of the angular 
momentum operator J ,  with any value of J.  The  value of ( 2 . 2 ~ )  for such a state will, 
because of the degeneracy, be independent of J, but will depend on the value of the para- 
meter 1’. Only states with J’ = J have physical meaning, and are eigenstates of the original 
Hamiltonian H.  Because of the degeneracy, we may, however, compute the energy also 
from states with J’ # J (e.g. with J = 0). Alternatively, we may use linear combinations 
of states with different J ,  even going as far as making C$ diagonal, although this extreme 
and rather singular choice would not usually be convenient. In  this sense it may be claimed 
that the method has separated the description of the rotation from the intrinsic dynamics. 

Simple algebra shows that, in order to make (2.2) an identity and to satisfy the com- 
mutativity conditions (2 .5) ,  the operators Wn) must have the following form : 

The dots stand for higher terms which contain powers of J higher than the second, and 
multiple commutators of higher order. If $ is a function of the nucleon coordinates only, 
and if the two-nucleon potential v i j  is static, 4 commutes with the potential energy, so 
that the first commutator [H, $1 comes only from the kinetic energy part of H and is linear 
in the particle momenta. The second commutator [[H,  $1, $1 then is a function of the 
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coordinates only, and the higher terms vanish. This is true even if the potential contains 
exchange forces, so that in u i j  there is a term containing Pii, the operator exchanging 
particles i andj ,  multiplied by a function of the coordinates. In  that case Pi j  still commutes 
with 4 provided the definition of 4 contains all the nucleons symmetrically, which is a 
reasonable restriction. Genuine velocity-dependent terms, such as the spin-orbit part of 
the force, would give rise to higher-order terms in (2.6). We have not investigated the 
effect of such terms, and we shall neglect them in what follows. 

For the reasons discussed in the introduction it is not satisfactory to assume the existence 
of an operator 4, and we have to work with a periodic function of 4. For the intrinsic 
ground state of an even-even nucleus, to which we shall restrict ourselves, we must choose 
a function of period T ,  the simplest choice being 

B = e2id. (2 .7)  
(Any other function with the same period can, of course, be written as a function of B.) 
The commutation law (2.4) must then be replaced by 

[ J ,  B ]  = 2B. (2.8) 
We also require the Hermitian conjugate to B, 

and evidently B*B = 1. 
B” = 

The expansion (2.2) then remains valid, with 

[H(n), J ]  = [H(n) ,  B]  = 0 

H‘O’ = H -  J fp  -4J211‘2’ - , . . 
provided we choose 

22‘” = $B*[H, B] - ( J +  1)HC2’+ ... 

(2.9) 

(2.10) 
= &B*[B*[H, B ] ,  B]  + ... . 

If B is a symmetric function of the nucleon coordinates it follows, as before, that the higher 
commutators indicated by the dots in (2.2) and (2.10) are zero for a static internucleon 
potential including exchange terms. All previous statements which do not contain 4 
explicitly thus remain valid. 

The rotational energy can now be expressed as the dependence of the eigenvalues of 
(2.2a) on the parameter J’. The moment of inertia is related to the quadratic term in J’ 
(the linear term vanishes for reasons of symmetry). If we wish to evaluate (2.2a) to order 
J’2 we may treat the second and third terms as small perturbations. The  quadratic term 
need be taken only to first order of perturbation theory, but the linear term has to be 
carried to second order. 

Because of the degeneracy we need not perform this calculation with angular momentum 
eigenstates for each J’, but may choose states of any angular momentum J ,  or linear 
combinations. Assume for the moment, for definiteness, that we know the eigenstates of 
So) which also have J = 0, and that these are labelled by a symbol n :  

H‘O’jn) = E n [ n ) ,  J i n )  = 0. (2.11) 

Then the Y2 term in the energy, which is by definition related to the moment of inertia, is 

(2.12) 

(2.13) 

where P is a projection operator excluding the state n = 0. 
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The summation in (2.12) should extend only over those eigenstates of H'O) which have 
value zero for the angular momentum operator, but this takes care of itself because H'l)  
commutes with J ,  so that it has no matrix elements connecting states of different angular 
momentum. We may therefore leave the sum in (2.12) unrestricted, except for the exclusion 
of the ground state, for which the denominator would vanish. For the same reason it is 
in order to take the projection operator P in (2.13) as excluding only the state IO). If the 
system has time-reversal invariance the projection operator P is unnecessary since W1) is 
odd under time reversal, so that H(l ) ]O)  and 10) must be orthogonal. 

Evidently we could have chosen as our initial state some eigenstate of H'O) with eigen- 
value E ,  and any arbitrary value of the angular momentum, since all the operators which 
occur in the calculation are degenerate. I t  then follows further that we may also choose a 
state which is not an eigenstate of angular momentum at all, but any linear combination 
of such states. The projection operator in (2.13) then again excludes only the initial state. 

I t  is a separate question for what values of J' the quadratic approximation is adequate 
and how large are the terms containing higher powers of J ' .  Apart from the additional 
terms in (2.2) which arise from velocity-dependent terms in the internucleon potential, 
this is a question of the rapidity of convergence of the perturbation series. This is governed 
by the magnitude of the collective terms H'l)  and H'2) relative to the energy difference 
between intrinsic states. This is just what one V V O U I ~  expect intuitively from the idea that 
these higher effects represent a distortion of the nucleus due to the Coriolis and centrifugal 
forces, the stiffness of the nucleus for deformations being related to its spectrum of intrinsic 
energy levels. I t  is quite straightforward to write down higher terms in the perturbation 
series. 

The expression (2.12) makes it particularly evident that it is important not to assume 
the existence of an angle operator 4. If we interpret (2.12) as expressed in the J = 0 
representation, the second term in in (2.6) vanishes because the operator J multiplying 
it has eigenvalue zero. Thus 

(OlH'1'ln) = iO]H+-+H/n) .  

But both 10) and in) have J = 0, and the first line of (2.6) shows that, acting on such states, 
H and H'O) are identical. Hence the matrix element is also 

(OjH'O'4-41I'"'~n) = (E,-E,)(O ]+in). 

But 4 commutes with H'O) and therefore cannot have matrix elements between states 
belonging to different eigenvalues of this operator. Hence the first term in (2.12) would 
vanish if 4 existed as an operator. The remaining term containing H'2) will later be seen 
to yield by itself a value for I close to the 'hydrodynamic' one. It would indeed be very 
surprising if such a simple result were generally valid. 

3. The angular operator 

is based on the direction of the major axis of the two-dimensional tensor of inertia: 
The most plausible choice for the directional operator B introduced in the last section 

where the suffixj runs over all nucleons. This evidently satisfies the commutation law (2.8). 
This function possesses, in principle, a singularity. For configurations in which the 

tensor of inertia is isotropic both the numerator and the denominator vanish and B becomes 
indeterminate. This kind of singularity is hard to avoid for any definition of an angle. It 
is not likely to be serious for cases in which the concept of rotational states is interesting, 
because these are cases of fairly heavy and strongly deformed nuclei, for which the proba- 
bility of finding isotropic configurations should be very small. This complication is certainly 
negligible if it is permissible to use the approximate method by which we propose to  
evaluate B, since the approximation ignores the possibility of such configurations. 
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Accepting this choice of B, the operators defined in (2.10) take the form: 
1 1 

These expressions are identical with those which would follow from (2.6)) not surprisingly, 
since, while + is ill-defined, its derivatives may be regarded as single-valued. Expres- 
sions (3.2) and (3.3) differ in detail from the expressions given by Villars; this is due to a 
slight algebraic error in Villars' algebra concerning the order of non-commuting factors, 
but this difference involves no point of principle. 

A direct evaluation of the matrix elements of (3.2) to (3.4) would be prohibitively 
complicated, because of the occurrence of D in the denominator. We note, however, that 
this denominator does not depend on the orientation of the tensor of inertia; it is a scalar 
function of its shape, i.e. of its eigenvalues. It may therefore be expected that the rotation 
will not substantially affect the value of D. Variations in D can come only from vibrational 
motion and other changes in the intrinsic state. Since these have high excitation energies 
one may expect that the fluctuations in D will be small, and this suggests that it may be a 
reasonable approximation to treat D as constant and replace it by its average value. This 
approximation would not, of course, be expected to apply to nuclei near the edge of the 
region in which the ground states of nuclei are deformed, since there the energy required 
to change the deformation is small, and fluctuations in the shape may be considerable. 

The  approximation of treating D as a constant should certainly not be used in evaluating 
commutators such as those occurring in (2.10)) since the stiffness of the system in resisting 
shape deformation, on which the approximation relies, implies also that the restoring force, 
and hence the frequency of such vibrations, is high. The  commutators must be computed 
from the exact expression (3.1)) which fortunately is possible, and the approximation for 
D used only in the result. 

T o  test the fluctuations of D, we computed the mean square fluctuation 

for the ground state of a system of independent nucleons in a deformed harmonic oscillator 
potential. The  calculation was done for a prolate shape, with the axis of symmetry in the 
x direction, so that 

with 
w x  = a ,  w y  = w z  = b (3.6) 

(3.7) d = a /b  < 1. 

We considered only nucleon numbers which were just sufficient to fill one of the sub-shells 
of the deformed oscillator, in order to avoid the complications of a degenerate ground 
state. For example, the largest number considered related to a case in which the shells 
with total quantum number up to 4 were filled, and in addition the sub-shells with 
(n,, ny+n,) = ( 5 , 0 ) ,  (4, 1)) (3,2) and (2,3), respectively, of the main shell with n = 5. 

The  results, which were obtained by means of the KDF9 computer of the University 
0f Oxford, are shown in figure 1 against the ratio d of the frequencies. It should be noted 
that for the more extreme deformations (small d )  the filling assumed is not correct, since 
the highest filled sub-shell has higher energy than some of the sub-shells of the major 
shell with n = 6. The  deformations for which this occurs are not very realistic, but in any 
case the correct filling would further reduce the magnitude of the fluctuations. Similarly, 
it is to be expected that the nucleon-nucleon correlations which are neglected in this 
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t 
0.65 0.70 0.72 

d 

Figure 1. Fluctuation of the shape parameter D (see equation (3.1)) as a function of 
the deformation. The  labels on the curves indicate the last filled sub-shell. 

estimate (apart from those caused by the Pauli principle) would further reduce the result. 

the fluctuations in D are reasonably small. 
We conclude from figure 1 that for not too small nuclei and not too small deformation 

4. Approximate evaluation of the moment of inertia 
The moment of inertia is given by (2.12) or (2.13) in which now all the operators are 

well-defined and, with the aid of the approximation introduced in $ 3 ,  manageable. 
However, the evaluation requires some knowledge of the eigenstates and eigenvalues of 
the intrinsic Hamiltonian 

The  most obvious idea would be to use the Hartree-Fock approximation, and to replace 
the matrix elements of H ( l )  in (2.12) by those calculated between the Hartree-Fock ground 
state and determinants formed from all possible one-particle wave functions in the Hartree- 
Fock potential. However, this procedure meets with a difficulty, which is particularly 
obvious for small deformation, i.e. for an almost spherical nucleus. 

The excited states, In), occurring in (2.12) will then include states of very low excitation, 
which differ from the ground state by the transfer of one or more nucleons from the last 
filled to the lowest empty sub-shell within the same main shell. Such transitions affect 
predominantly the rotational aspect of the problem, which is supposed to have been 
eliminated in our construction of the intrinsic Hamiltonian So). One would not expect 
to find states of such low intrinsic excitation, but this kind of excitation should be in part 
contained in the degenerate ground states of H(O) which, as was discussed in $2,  do not 
contribute to (2.12), and perhaps in part in the intrinsic excitations, which should have 
excitation energies comparable with the splitting of the main shells. 

The  complete orthonormal set of states based on the Hartree-Fock potential does not 
possess the exact degeneracy required of the eigenstates of W O ) ,  and this presumably 
accounts for the appearance of states of low excitation. Such states are, of course, important 
for the sum in (2.12) since they occur with small denominators. One possible way to 
overcome this difficulty would be to omit from (2.12) all terms arising from transitions 
within the partly filled main shell, on the grounds that such states would in a more exact 
treatment be degenerate with the ground state. However, this procedure seems rather 
arbitrary; moreover, it becomes ill-defined for larger deformation, when the spacing of the 
sub-shells becomes comparable with the spacing of the main shells, or may even exceed it. 

T o  illustrate this point, we carried out calculations in which the Hartree-Fock potential 
was again replaced by a deformed oscillator potential, which has a very similar structure. 
If all terms were retained in (2.12) the sum became so large as to exceed the last term, so 
that the rotational energy became negative. If the transitions within the last main shell 
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were omitted, one obtained a positive value for the moment of inertia, of a reasonable 
order of magnitude, but it seems clear that no great reliance can be placed on these results. 

Instead, it is preferable to base our evaluation on (2.13) and to deal with our lack of 
knowledge of the precise eigenstates of the intrinsic Hamiltonian by using a variation 
principle. We require three pieces of information for the evaluation of (2.13): (i) some 
approximation to the ground state 10) of the intrinsic Hamiltonian; (ii) a knowledge of the 
ground-state energy E,; (iii) some approximation to the Green function ( E ,  -H(o))-l. 

As regards (i) it seems likely that the operator whose ground-state expectation value is 
required in (2.13) is not too sensitive to the precise form of the ground-state wave function, 
and we shall therefore replace 10) by a wave function of the Hartree-Fock type, which, 
for the present purpose, we shall further simplify by using a determinant of harmonic 
oscillator states, say Ix). 

We therefore replace the first term of (2.13) by - F o ,  where 

The projection operator P in (2.13) may be omitted, provided the symmetry of ( X I  is such 
that 

(OIH'1'IX) = 0 (44 
as is the case for the exact intrinsic ground state IO). Since H ( l )  changes sign under the 
transformation (x, y ,  z )  j. (-x, y ,  z )  or (x, -y ,  x), this condition is satisfied provided 
Ix} is either even or odd in x and y separately. This ensures at the same time that there 
is no linear term in J' in the perturbation expansion of (2 .2~) .  

We now remark that (4.1) can also be expressed as the value of the functional 
F(v) = - (vIH'O'-E,Iv)+ (vjH(l,jx)+(xIH'1'jv) (4.3) 

(H'O'--E,)]V) = H'l'lx). (4.4) 

€or the function v defined by the equation 

It is easy to verify that (4.4) is also the condition that 2; be the function which maximizes 
the functional (4.3), provided all eigenvalues of H'O) belonging to the appropriate symmetry 
lie above E,.t The quantity F ,  defined by (4.1) is therefore the maximum of the functional 

We therefore obtain an approximation to F ,  by maximizing the functional within a 
suitable class of functions, for which we shall choose a limited number of the Slater deter- 
minants of harmonic oscillator functions in the same potential which yields our approxi- 
mation to the ground-state eigenfunction. If the class of functions within which F is 
maximized forms a linear set, the last two terms of (4.3) are equal to each other and equal 
and opposite to the first at the restricted maximum. 

5. A numerical example 
We have carried out a calculation for a simple example to test the procedure outlined 

in  $4. The nucleon number chosen for this corresponds to the nucleus 28Si. Since our 
method requires a non-singular nucleon-nucleon potential, we have followed Husain (1967) 
in  choosing a Rosenfeld mixture of Gaussian shape : 

(4.3). 

vt3 = 7,. T3(g2 + f 2 c r i .  c r 3 )  exp{ - (Y, - Y~)~) (5.1) 
with g2 = 0.424 and ,f2 = 0.965. The unit of length is 1.791 fermis, and the unit of 
energy 12.93 MeV. These force parameters agree with low-energy nucleon-nucleon 
scattering data. The  force leads to saturation, and would be suitable for a Hartree-Fock- 
type calculation. 

7 The  same maximum property, which allows one to put a lower bound on the magnitude of the 
second-order perturbation term for the ground-state energy when the unperturbed ground-state 
wave function is known, is also derived in a recent paper by Sharma (1967). 
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The ground-state wave function was taken to be that for a harmonic oscillator well 
with a prolate deformation, for which 28 particles fill the sub-shells (0, 0), (1, 0), (0, I), (2 ,  0) 
and (1, 1). The  number of nucleons is really too small to make the fluctuations of the 
denominator D negligible (see 5 3), so that our results for this case can be of only pre- 
liminary value. The  oscillator parameters should then, strictly speaking, be chosen in 
such a way as to minimize (xIH(O)Ix). For simplicity we have instead chosen the values 
given by Husain (1967), which minimize the expectation value of H. 

To obtain the rotational energy of this model, we must first compute the second term 
in (2.12). This is given by the expectation of (3.4) in which D will be replaced by its. 
expectation value, as discussed in 5 3. 

D is in fact very closely related to the velocity distribution for irrotational flow, at least 
for uniform density and an ellipsoidal shape, and the rotational energy from the second 
term of (2.12) alone gives a value very close to the ‘hydrodynamic’ value quoted by Bohr 
and Mottelson (1953). In  our model this second term corresponds to a moment of inertia 
of 

in our units (76.2 x 
According to (3.3), H ( l )  contains only two-nucleon operators and will lead from the 

initial state x only to states where either one or two nucleons are transferred to higher 
states. It is therefore reasonable to restrict the trial function U in (4.3) to be a sum of 
one-particle, one-hole and two-particle, two-hole states. The largest matrix elements of 

lead from the initial state to states in which one particle has changed its oscillator 
quantum number in the x and y direction by & 1 unit each, while its x vibration is 
unchanged. We have therefore restricted E to be a linear combination of these states only. 
There are 32 such states, but since the operators are independent of spin and charge, 
there are only eight independent coefficients. 

The matrix elements were computed algebraically, and the set of linear equations 
determining the maximum of (4.3) were solved on the University of Washington computer. 

Ihydro  = 14.2 ( 5 4  
g cm2), and we shall express the other term relative to this. 

I I 

I I < Ho> 

The resulting values of the rotational energy are shown in figure 2 against the value of 
Eo,  in units of the hydrodynamic value. It is obvious that the curve must approach unity 
for very low E,, since the first term in (2.12) then becomes negligible. For increasing E, 
the curve must go down, approaching - CO when E ,  reaches the value of the first intrinsic 
state with the same symmetry as H ( l ) l ~ ) .  

Finally, we require an estimate of E,, the true ground-state eigenvalue of W O ) .  The 
variational estimate based on the expectation value of H(O) for our approximate function 
\x> is too high, and a better estimate could be obtained by correcting this to second order 
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of perturbation theory. A rough estimate of this second-order correction can be taken from 
the work of da Providencia (1961)) who finds, with a very similar interaction, that the 
second-order correction for l6O lies between -0.23 and -0.54 units per particle. This 
would place the result on the heavy part of the curve in figure 2, leading to a moment of 
inertia of about 1.2 times the ‘hydrodynamic’ value. This is rather too low compared with 
the data for real nuclei, but in view of the preliminary nature of our calculation this is not 
surprising. 

6.  Discussion 
We have shown that the formalism of Villars not only gives in principle an exact 

expression for the moment of inertia, but that it can be used for an approximate evaluation 
with a reasonable effort. 

Our calculation needs improvements in several respects : 
(i) One must test the effect of widening the subspace of functions included in U. Because 

of the variational nature of (4.3), this must increase I .  
(ii) The calculation should be extended to heavier nuclei, since the approximation of 

constant D is only then convincing. One should also test this approximation further by 
estimating the corrections arising from the fluctuations in D. 

(iii) One should use a better approximation for the ground-state function x by allowing 
particularly for pairing correlations. 

(iv) The  approximation should ultimately be adapted to the use of realistic, i.e. singular, 
internucleon potentials. 
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